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The Energy Revolution: Big Picture

From centralized to a 
decentralized and distributed 
energy systems

Changing Generation Mix Transactive Energy

Electrical Cars Decentralization



The control picture has not changed
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RIAPS Vision



RIAPS Vision
• Push computation to the 

edge

• Enable common technology 
stack across the ecosystem

• Provide core services to 
enable the rapid
development of smart apps



RIAPS Software Platform

• At the core of the RIAPS vision is a reusable 
technology stack to run Smart Grid applications
A software platform defines:

– Programming model (for distributed real-time 
software) on embedded nodes dispersed throughout 
the power grid

– Services (for application management, fault tolerance, 
security, time synchronization, coordination, etc.)

– Development toolkit (for  building and deploying 
apps)



A Reusable Software Platform for Smart Grid



Core RIAPS Concepts: RIAPS System
• RIAPS Nodes: Networked Embedded Computers

• Applications consists of actors that contain components

• Component communicate and interact using well-defined 
patterns: publish/subscribe + client/server

• Expected scale: ~10^2 nodes 



Design: Component Framework
• Software components are the reusable 

building blocks of applications (actors 
group them into a single process)

• Components have a state and interact 
via ports
– Receiver of messages (‘subscriber’)

– Server of client requests

– Sender of messages (‘publisher’)

– Client of servers

• Components are single-threaded: one 
operation at a time

• Components are triggered by the 
arrival of a message, a request, or a 
timer event

 Component triggering logic is 
encapsulated in a function that can 
include complex decisions

Benefits: Reusable components + concurrency is handled in the framework (not in the 
‘business logic’) + lends itself to timing analysis



Design: Component Framework
Example: 3 actors, with 2+1+1 
components, interacting via 
pub/sub and client/server patterns

Implementation languages: 
Python, C++



Design: Platform Services

• Application Deployment and Management

– Function: Remotely installs and manages apps

Benefit: Authoritative control over all software deployed on the RIAPS network. 



Design: Platform Services
• Discovery: The Broker Service

– The ‘matchmaker/housekeeper’ – how the 
components/actors of an app find each other on the 
network

Benefit: Actors of a RIAPS app can come and go at any time – they are still able to 
connect to the group reliably. 



Design: Platform Services

• Discovery: The Broker
– A fault-tolerant distributed database where 

component register themselves and look up other 
components

– Publishers  Subscribers + Clients  Servers
– Implementation: distributed hash table



Design: Platform Services
• Time Synchronization

– Maintains a cluster-wide synchronized notion of time 

– Applications can: (1) query the global time, (2) sleep until a 
specified point in time, (3) query the status of the service

– Architecture:
• Use PTP (IEEE-1588)

• Some nodes may have a GPS

• GPS clock is distributed

• Fallback: NTP

• Accuracy: ~10 usec

Benefit: Precisely synchronized time base available to all apps on the RIAPS network.



Design: Platform Services
• Device interface

– Encapsulates ‘power system devices’ that use specific protocols (e.g. Modbus, 
DNP3, IEC 61850etc.) and hardware interfaces (RS-232, TCP/IP, etc.) and 
provides a (RIAPS-compliant) messaging interface to the device

 Device interactions:

 Sporadic input: sensor reading at an arbitrary time 

 Periodic input: periodic sensor reading (stream)

 Sporadic output: actuator command at an arbitrary time

 Periodic output: actuator periodically updated

 Scheduled output: actuator is updated at a specific point in time 

Benefit: Portable applications – device dependencies are encapsulated in the service.



Design: Platform Services
• Distributed coordination

– For coordinating applications distributed on the 
network

– Features:
• Group membership: join/leave group, query membership, 

get notified when membership changes
• Leader election: elect a leader for centralized functions, 

when leader becomes unavailable elect another one 
automatically

• Distributed consensus: participants agree on a ‘value’
• Time-coordinated action: execute a control action on many 

nodes simultaneously (up to time synchronization accuracy)

– Algorithms: Paxos/RAFT

Benefit: Reusable implementation of difficult algorithms – available as a service. 



Design: Platform Services
• Resource management

– Keeps track of resource usage (CPU, memory, files space, I/O)
– Manages quotas and access
– Signal errors/terminates applications if resource restrictions are violated

• Logging
– Efficient, low-overhead logging of events in apps and managers
– Global management of all logs

• Persistence
– Efficient, low-overhead database for node-local real-time data
– Global management of the database

• Fault management
– Monitors apps/managers/system for faults
– Mitigates fault effects (e.g. automatic restart, checkpoint, etc.)

• Security management
– Secure information flows among app components
– Global management of security keys

Benefit: Complex housekeeping functions – apps don’t need to implement them. 



Design: Model-driven Development
• Goal: Average software developers 

are productive in developing 
complex RIAPS apps

• Developers build:
– Application ‘business logic’ – the 

algorithms
– Models to represent the 

components and their composition 
to form an app

• Toolchain generates:
– Intermediate code, software 

engineering artifacts

• Model-based toolchains are effective 
(Simulink/Stateflow)
– But they are ‘closed’ and not suited 

for distributed systems

Benefits: Developer can focus on the core logic of the application (the ‘algorithms’) –
the composition and configuration is done on a higher-level of abstraction.



Design: Model-driven Development

• Approach: 
– Use a simple, text-based language for the models (diagrams, if 

needed, can be rendered automatically)

– Integrated it with the code-based IDE (Eclipse) where the application 
logic is entered (as C++ code) 

– Develop code generators and integrate them into the IDE (for a 
seamless workflow)

– Prototype: Eclipse



Application1: 
Response Based Remedial Action Scheme (WSU)

• RAS is a key mechanism to protect electric power grid, generally used as the 
last line of automatic defense

• Existing RAS are pre-determined, inflexible and do not factor in changing 
system conditions and might take control actions good for small system but 
not optimal for the overall power grid 

• RIAPS will enable dynamic coordinated response based RAS (DCRB-RAS), 
which will use measurements, changing network conditions, control settings 
to dynamically decide control decisions



Application1: 
Response Based Remedial Action Scheme (WSU)

Two applications:

RAS I for managing wind generation: curtailment 

Data acquisition actor:  Protocol conversion, periodic and event data input , 

time stamping,  buffer input data,  time aligning 

DLSE  actor:  Noise filtering, bad data, topology processing, WLS    

RAS  actor:  Initialization, obtain state variable, optimization,

solution update, generate control actions

RAS II for under-frequency control: load shedding
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Application2: 
Microgrid Islanding (NCSU)

• Application of interest: Formation and interactions of  microgrids on a 
distribution feeder

• Focus: power management

• Main application scenario:
– Unplanned transition from grid-connected to islanded mode and re-synchronization.

– Distributed control and protection framework will be used to implement a fast transition 
scheme
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Demo of an Early Prototype: Synchronization Application

https://riaps.isis.vanderbilt.edu/blog/

https://riaps.isis.vanderbilt.edu/blog/


Project Summary

• Expected outcomes

– The platform will enable developers – sanctioned by 
utilities - to build reusable components and applications

– The platform specification and its prototype 
implementation is open source, but industrial partners will 
provide software development services for it

– A new open standard that will change how software for 
the smart grid is developed




