
Towards a
Resilient Information Architecture 

Platform for the Smart Grid:
RIAPS

Gabor Karsai, Vanderbilt University (PI)
In collaboration with

Abhishek Dubey (Vanderbilt)
Srdjan Lukic (NCSU) 

Anurag Srivastava (WSU)

https://riaps.isis.vanderbilt.edu/

Supported by DOE ARPA-E under award DE-AR0000666



The Energy Revolution: Big Picture

From centralized to a 
decentralized and distributed 
energy systems

Changing Generation Mix Transactive Energy

Electrical Cars Decentralization



The control picture has not changed

Gas station

Factory

Airport

Company

Fire station

Market

Police 

station

Transmission substation

Power plant
Distribution substation

Remote control switch

Smart campus

Distribution operating center

Wind generator

Storage

Distance relay

Distance relay

Sectionalizer

Overcurrent relay

Overcurrent relay

Recloser

4 way switch

Communication Network

Centralized SCADA 
supported by a 
utility company



The control picture has not changed

Gas station

Factory

Airport

Company

Fire station

Market

Police 

station

Transmission substation

Power plant
Distribution substation

Remote control switch

Smart campus

Distribution operating center

Wind generator

Storage

Distance relay

Distance relay

Sectionalizer

Overcurrent relay

Overcurrent relay

Recloser

4 way switch

Communication Network

Problems
• Integration 

challenge
•Reliability issues
•Management 

issues



RIAPS Vision



RIAPS Vision
• Push computation to the 

edge

• Enable common technology 
stack across the ecosystem

• Provide core services to 
enable the rapid
development of smart apps



RIAPS Software Platform

• At the core of the RIAPS vision is a reusable 
technology stack to run Smart Grid applications
A software platform defines:

– Programming model (for distributed real-time 
software) on embedded nodes dispersed throughout 
the power grid

– Services (for application management, fault tolerance, 
security, time synchronization, coordination, etc.)

– Development toolkit (for  building and deploying 
apps)



A Reusable Software Platform for Smart Grid



Core RIAPS Concepts: RIAPS System
• RIAPS Nodes: Networked Embedded Computers

• Applications consists of actors that contain components

• Component communicate and interact using well-defined 
patterns: publish/subscribe + client/server

• Expected scale: ~10^2 nodes 



Design: Component Framework
• Software components are the reusable 

building blocks of applications (actors 
group them into a single process)

• Components have a state and interact 
via ports
– Receiver of messages (‘subscriber’)

– Server of client requests

– Sender of messages (‘publisher’)

– Client of servers

• Components are single-threaded: one 
operation at a time

• Components are triggered by the 
arrival of a message, a request, or a 
timer event

 Component triggering logic is 
encapsulated in a function that can 
include complex decisions

Benefits: Reusable components + concurrency is handled in the framework (not in the 
‘business logic’) + lends itself to timing analysis



Design: Component Framework
Example: 3 actors, with 2+1+1 
components, interacting via 
pub/sub and client/server patterns

Implementation languages: 
Python, C++



Design: Platform Services

• Application Deployment and Management

– Function: Remotely installs and manages apps

Benefit: Authoritative control over all software deployed on the RIAPS network. 



Design: Platform Services
• Discovery: The Broker Service

– The ‘matchmaker/housekeeper’ – how the 
components/actors of an app find each other on the 
network

Benefit: Actors of a RIAPS app can come and go at any time – they are still able to 
connect to the group reliably. 



Design: Platform Services

• Discovery: The Broker
– A fault-tolerant distributed database where 

component register themselves and look up other 
components

– Publishers  Subscribers + Clients  Servers
– Implementation: distributed hash table



Design: Platform Services
• Time Synchronization

– Maintains a cluster-wide synchronized notion of time 

– Applications can: (1) query the global time, (2) sleep until a 
specified point in time, (3) query the status of the service

– Architecture:
• Use PTP (IEEE-1588)

• Some nodes may have a GPS

• GPS clock is distributed

• Fallback: NTP

• Accuracy: ~10 usec

Benefit: Precisely synchronized time base available to all apps on the RIAPS network.



Design: Platform Services
• Device interface

– Encapsulates ‘power system devices’ that use specific protocols (e.g. Modbus, 
DNP3, IEC 61850etc.) and hardware interfaces (RS-232, TCP/IP, etc.) and 
provides a (RIAPS-compliant) messaging interface to the device

 Device interactions:

 Sporadic input: sensor reading at an arbitrary time 

 Periodic input: periodic sensor reading (stream)

 Sporadic output: actuator command at an arbitrary time

 Periodic output: actuator periodically updated

 Scheduled output: actuator is updated at a specific point in time 

Benefit: Portable applications – device dependencies are encapsulated in the service.



Design: Platform Services
• Distributed coordination

– For coordinating applications distributed on the 
network

– Features:
• Group membership: join/leave group, query membership, 

get notified when membership changes
• Leader election: elect a leader for centralized functions, 

when leader becomes unavailable elect another one 
automatically

• Distributed consensus: participants agree on a ‘value’
• Time-coordinated action: execute a control action on many 

nodes simultaneously (up to time synchronization accuracy)

– Algorithms: Paxos/RAFT

Benefit: Reusable implementation of difficult algorithms – available as a service. 



Design: Platform Services
• Resource management

– Keeps track of resource usage (CPU, memory, files space, I/O)
– Manages quotas and access
– Signal errors/terminates applications if resource restrictions are violated

• Logging
– Efficient, low-overhead logging of events in apps and managers
– Global management of all logs

• Persistence
– Efficient, low-overhead database for node-local real-time data
– Global management of the database

• Fault management
– Monitors apps/managers/system for faults
– Mitigates fault effects (e.g. automatic restart, checkpoint, etc.)

• Security management
– Secure information flows among app components
– Global management of security keys

Benefit: Complex housekeeping functions – apps don’t need to implement them. 



Design: Model-driven Development
• Goal: Average software developers 

are productive in developing 
complex RIAPS apps

• Developers build:
– Application ‘business logic’ – the 

algorithms
– Models to represent the 

components and their composition 
to form an app

• Toolchain generates:
– Intermediate code, software 

engineering artifacts

• Model-based toolchains are effective 
(Simulink/Stateflow)
– But they are ‘closed’ and not suited 

for distributed systems

Benefits: Developer can focus on the core logic of the application (the ‘algorithms’) –
the composition and configuration is done on a higher-level of abstraction.



Design: Model-driven Development

• Approach: 
– Use a simple, text-based language for the models (diagrams, if 

needed, can be rendered automatically)

– Integrated it with the code-based IDE (Eclipse) where the application 
logic is entered (as C++ code) 

– Develop code generators and integrate them into the IDE (for a 
seamless workflow)

– Prototype: Eclipse



Application1: 
Response Based Remedial Action Scheme (WSU)

• RAS is a key mechanism to protect electric power grid, generally used as the 
last line of automatic defense

• Existing RAS are pre-determined, inflexible and do not factor in changing 
system conditions and might take control actions good for small system but 
not optimal for the overall power grid 

• RIAPS will enable dynamic coordinated response based RAS (DCRB-RAS), 
which will use measurements, changing network conditions, control settings 
to dynamically decide control decisions



Application1: 
Response Based Remedial Action Scheme (WSU)

Two applications:

RAS I for managing wind generation: curtailment 

Data acquisition actor:  Protocol conversion, periodic and event data input , 

time stamping,  buffer input data,  time aligning 

DLSE  actor:  Noise filtering, bad data, topology processing, WLS    

RAS  actor:  Initialization, obtain state variable, optimization,

solution update, generate control actions

RAS II for under-frequency control: load shedding

RIAPS Node 

Data 
Acquisition 

Actor
PMU 2

Substation Sensors

DFR 1

RTU 1

PMU 1

CBM 1

TCP

DNP3

Buffer

GA/SA

Device 
Interface

Circuit Breaker 1

Substation Actuators

Other Nodes
Data Inputs/Outputs

Other Nodes
Control Events

TCP

TCP

Circuit Breaker 2

DNP3

GA

SA

SA

SA

SA

GA SA

GA

Actors layer

Power system 

layer



Application2: 
Microgrid Islanding (NCSU)

• Application of interest: Formation and interactions of  microgrids on a 
distribution feeder

• Focus: power management

• Main application scenario:
– Unplanned transition from grid-connected to islanded mode and re-synchronization.

– Distributed control and protection framework will be used to implement a fast transition 
scheme

Islanded Mode

Applications:
- F & V Restoration
- Load Shedding

Fault

Applications:
- Protection
- Islanding Detection
- µ-grid Membership 
- FTS Execution

Scheduled 
Outage

Applications:
- µ-grid Membership 
- Int. Islanding

Grid-Connected 
Mode

Applications:
- Fault Transition 
Scheme (FTS)

Applications:
- Resynchronization

Grid 
Restored



Demo of an Early Prototype: Synchronization Application

https://riaps.isis.vanderbilt.edu/blog/

https://riaps.isis.vanderbilt.edu/blog/


Project Summary

• Expected outcomes

– The platform will enable developers – sanctioned by 
utilities - to build reusable components and applications

– The platform specification and its prototype 
implementation is open source, but industrial partners will 
provide software development services for it

– A new open standard that will change how software for 
the smart grid is developed




